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Davidson’s method for the iterative calculation of eigenvalues of large, real-symmetric 
matrices which makes possible the direct determination of higher roots without knowl- 
edge of the exact lower ones is modified to yield just such roots whose eigenvectors have 
a desired structure, that is, a desired set of dominant components. The algorithm is 
treated theoretically and applied to some configurational interaction (CI) problems. 
A study of the convergence behavior of Davidson’s scheme is carried out. 

1. INTRODUCTION 

Large-scale configuration interaction (CI) calculations of electronic wave- 
functions of atoms and molecules require the construction of a few of the lowest 
eigenvalues and their corresponding eigenvectors of large, sparse, real-symmetric 
matrices. The first method which made the solution of that task practicable for 
matrices whose dimension gets to the order in magnitude of 10,000 is the root- 
shifting optimal relaxation (MOR) procedure developed by Shavitt, Bender, 
Pipano and Hosteny [l]. The following decisive attributes of their scheme make it 
superior to conventional matrix diagonalization methods: 

(a) No arithmetic operations are performed with zero matrix elements which 
make up usually about 70 per cent of the elements of CI matrices. 

(b) The expense of arithmetic operations increases only with N& - I where 
Nerl is the “effective” order of the matrix (being much smaller than the actual order 
because of the zero elements) and I is the number of iterations needed to achieve 
convergence for all eigenvectors sought. 

(c) The matrix which is too big to fit in the computer’s central memory can 
be easily handled in pieces: the elements of only one row (actually only Ail, with 
i < k) are needed at a time, different rows are needed in sequential order. 
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However, the scheme has several disadvantages: the convergence slows down 
considerably when the first component of a pair of near-degenerate eigenvalues 
is treated. Furthermore, the MOR scheme requires a large amount of central 
memory if several eigenvectors are calculated and it must always find all eigen- 
values below the one desired. 

Recently Davidson [2] proposed a new method to handle such large CI matrices. 
His scheme has the same advantages as the MOR method, but overcomes all 
disadvantages of the latter: the convergence is not hindered in the case of near- 
degeneracy of roots. In addition it provides the possibility to calculate a distinct 
root without finding exact solutions for any lower ones. 

The direct calculation of a higher root with that scheme is, however, affected 
by the following problem: to start the Davidson procedure for the kth root a 
vector subspace of the order 1 with I > k is needed which contains in the ideal 
case good approximations for the first k exact eigenvectors. In practice such a 
subspace is obtained by a prediagonalization of an appropriate submatrix. How- 
ever, the resulting trial vectors do not, in general, reflect the ordering of the first k 
eigenvectors of the full problem. Hence, one cannot take full advantage of that very 
attractive features of Davidson’s method to calculate a certain root directly. 

Therefore, a modification of Davidson’s algorithm is proposed in the present 
paper. The modified scheme directs the convergence to one or several desired roots. 
That is, in spite of a possible occurrence of root inversion the modified procedure 
enforces convergence to just such eigenvalues whose eigenvectors have a desired 
structure. 

In the present paper this “root-homing procedure” (RHP) is discussed in detail. 
A theoretical investigation of the convergence of the Davidson method is performed 
also. Finally, test calculations are reported and an application to actual CI methods 
is discussed. 

2. DAVIDSON’S METHOD 

The determination of the kth eigenvalue and of the corresponding eigenvector 
xlc is established in Davidson’s algorithm by the following procedure: the eigen- 
vector xk is iteratively expanded in an orthonormal vector basis. In the Mth 
approximation xK is: 

The first 1 expansion vectors bj lo’ define the zero-order subspace. The vectors 
b’k’ I+l ,..., bc’ are obtained in M - I subsequent iterations. They are determined 
as to give a fast convergence of the expansion (1). The superscript k in bjk) indicates 
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the dependence of the expansion vectors on the eigenvalue number. The expansion 
coefficients oli;Mk) in (1) are the components of the kth eigenvector of the matrix 
(&) of the order M which is defined by 

m,m’=O;i<I,j<l 
iiti = (bLm), Ab;““) with =k;i>I,j>l 

i,j = 1, 2 ,..., M. 

The eigenvalue /$!“’ of (6,J provides an upper bound for the kth eigenvalue of 
the full secular equation. 

In the following iteration step the vector b$, is obtained by Schmidt-ortho- 
gonalization of the vector d,,, “) to all M expansion vectors already present. dg:, 
is de&red by 

d(k) 
Jut1 = D . &\I (2) 

with 

D - Lz/@Y,“’ - ‘Ln) n,m - 

q”“’ M+l = (A - X’.M’l) xi”’ h 

Convergence is achieved if I q$’ 1 becomes less than a given appropriate threshold. 
To calculate a further root the vectors 

are taken as the new according to the Hylleraas-Undheim theorem [5] improved 
starting subspace where M is the final dimension of the expansion (1) for the vector 
just finished. This implicit improvement of the cases still to be done is another 
feature which makes the Davidson method superior to the MOR scheme. 

The dimension of the submatrix ((?ij) which is diagonalized by conventional 
standard methods increases by one in each itereation step (M -+ A4 + 1). In the 
limiting case A4 -+ N where N is the dimension of the full secular equation all 
eigenvalues of (Eij) are identical to the eigenvalues of the full problem. 

But in practice convergence is achieved after few iterations (M < N). In the 
case of a nonideal starting subspace the roots of (&) so obtained need not neces- 
sarily have the same eigenvalue ordering, as the corresponding ones in the full 
problem (see Section 5, Table I, III) nor need the eventually existing “eigenvalue 
holes” in the subspace be Wed up completely. That means that even if the eigen- 
value number k of a desired root of the full secular equation were known the use 
of the latter as a k value in the procedure described above would not guarantee 
convergence of X(kM) to the right root. 
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The sequential calculation of a series of roots until finding the one sought would 
be one way to overcome this difficulty. The fewer total number of iterations 
needed would be the only advantage over the MOR method. 

TABLE I 

Iteration Steps Needed for the Direct Determination of the Sixth 
Root of the Ethene Matrix without Using Prediagonalization Results0 

M 

1 -78.59767227 
2 -78.76023843 
3 -78.76906250 
4 -78.85120680 
5 -78.77303221 
6 -78.77366252 
7 -78.90292513 
8 -78.77077014 
9 -78.77194205 

10 -78.80793335 
11 -78.77117318 
12 -78.77120029 
13 -78.77120253 
14 -78.77120277 
15 -78.81420173 
16 -78.77120273 
17 -78.77120277 
18 -78.77120278 
19 -78.77120278 
20 -78.80616454 
21 -78.77120278 
22 -78.77120278 
23 -78.77120278 
24 -78.77120278 
25 -78.77120278 

19‘ul 
~- 

0.6222497 
0.1356590 
0.1067663 
0.2442999 
0.1802442 
0.2884035 
0.2122264 
0.0341811 
0.0568409 
0.1031651 
0.0062123 
0.0017138 
0.0006209 
0.0001997 
0.0384177 
0.0002237 
O.OCOO676 
0.0000214 
0.0000807 
0.0787059 
o.OOOOO74 
0.0000085 
0.0000074 
0.0000032 
0.0000008 

k 

1 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 

a Nonzero coefficient of the starting vector: 1.0 in position 14 (see 
Table II). 

Notation: M, dimension of the submatrix (rlij); XkW’, kth eigen- 
value of (Zij); k, currently treated root number; 1 qM j. convergence 
criterion. 
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TABLE II 

Comparison of the Exact Lowest Five Roots and the Main Components of Their Eigenvectors 
with Their Approximative Counterparts Resulting as By-products from the Direct Calculation 

of the Sixth Root of the Ethene Matrix” 

Root E[a.u.] E’[a.u.] MC MC’ 

1 -78.991677 -78.983687 

2 -78.937455 -78.936687 

3 -78.847371 -78.843086 

4 -78.814648 -78.814529 

5 -78.812900 -78.812452 

6 -78.771203 - 
- 
- 
- 
- 

0.964655 (1) 

0.965219 (13) 

0.965378 (11) 
0.125004 (12) 
0.090101 (125) 

0.068596 (389) 
0.087278 (393) 

-0.071098 (406) 

0.162298 (14) 
0.684251 (144) 
0.693114 (147) 
0.065022 (601) 
0.065830 (645) 

-0.067242 (11) 
0.702490 (144) 

-0.693678 (147) 
0.064581 (601) 

-0.063713 (645) 

0.939046 (14) 
0.057617 (16) 

-0.122485 (144) 
0.057840 (145) 

-0.122437 (147) 
0.057855 (149) 

0.966134 (1) 
0.065371 (13) 

0.068738 (1) 
0.964174 (13) 

0.965405 (11) 
-0.050936 (12) 

0.161302 (125) 

-0.059589 (147) 
0.052934 (389) 
0.079686 (393) 

-0.076895 (406) 

0.162727 (14) 
0.714605 (144) 
0.662254 (147) 
0.067545 (601) 
0.062553 (645) 

-0.076313 (11) 
0.67223 1 (144) 

-0.723188 (147) 
0.058218 (601) 

-0.064711 (645) 
- 
- 
- 
- 
- 
- 

a E, E’, exact and approximate energies; MC, MC’, exact and approximate main components 
for the CI-vectors. The integers in parenthesis specify their positions. 

But if one does not keep the eigenvalue number k of (&) fixed but lets it assume 
a value which is adapted to an eventually new situation in the subspace arising 
in a further iteration step it is, in fact, possible to calculate directly one or several 
roots whose eigenvectors have a desired structure. The corresponding modification 
of Davidson’s method which makes it possible to use the latter in a very efficient 
way is described in detail in the following section. 
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TABLE III 

Iteration Steps Needed for the Direct Determination of the Fourth 
Root of the ArH+-Matrix without Using Prediagonalization Results” 

M I 4w I k 

1 -526.0227894 0.5097598 
2 - 526.1026749 0.2222892 
3 - 526.1207424 0.3033201 
4 - 526.1544377 0.1224675 
5 -526.1635099 0.0477307 
6 -526.1117487 0.0813802 
7 -526.1141247 0.0233395 
8 -526.1144214 0.0074782 
9 - 526.1265023 0.2823006 

10 -526.1144114 0.0073254 
11 -526.1144433 0.0028433 
12 -526.1144478 0.0011203 
13 -526.1144479 0.0004486 
14 -526.1644969 0.0069209 
15 -526.1144478 0.0000437 
16 - 526.1144478 0.0000175 
17 -526.1144478 o.oooO042 
18 -526.1144478 o.OoOOO12 
19 -526.1144478 o.OooOoO3 

1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 

4 
4 
4 
4 

o Nonzero coefficients of the starting vector: l/ %‘z and - 1 /d/z in 
those positions which are to be dominant. 

Notation: see TABLE I. Resulting exact values of the expected 
dominant coefficients of the eigenvector: 0.666712; -0.465193. 
Other important components: 0.374336; -0.103378; 0.374345; 
-0.103378. 

3. ROOT-HOMING PROCEDURE (RHP) 

For the calculation of K roots one needs as input K qualitative trial vectors 
b,= (j = l,..., K) which contain rough approximations for the dominant coefficients 
of the desired vectors. They can be found by inspection, for instance from simple 
MO-theory, or by solving a very small CI problem considering only main con- 
figurations. 
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Then a prediagonalization of the matrix A is carried out. That is, a submatrix 
Asub of small order is diagonalized which consists of matrix elements of A between 
main configurations and a given number of configurations which have according 
to any selection criterion the strongest interactions with the main configurations 
[3]. One assigns to each trial vector bir (i = l,..., K) one prediagonalization 
vector bjo’ which has the largest overlap with the latter (one-to-one correspon- 
dence). The numbers of these so selected vectors bi”’ are called vi , v2 ,..., vK . 
Since the bt),..., b:z are energetically ordered the vI ,..., vK are the desired 
eigenvalue numbers with respect to the zero-order subspace. Its dimension 
is chosen as I > maximum ({vi)) to guarantee that the vector space spanned 
by the selected prediagonalization vectors is conserved during the iteration proce- 
dure. Thus the zero-order subspace consists of the first I prediagonalization 
vectors filled up by zero coefficients to the dimension of the full secular 
equation. 

It is reasonable to initiate the whole procedure with the calculation of that 
eigenvalue whose eigenvector structure corresponds to that by’ which belongs to 
the lowest eigenvalue of the prediagonalization problem, that is, to start with 
the eigenvalue number k = minimum ({vi}): firstly, the lowest eigenvalue obtained 
in the prediagonalization corresponds in many cases to the lowest eigenvalue of 
the full equation. Then rearrangements in the subspace do not slow down con- 
gence of the eigenvalue treated. Secondly, experience shows (see Section 5) that 
rearrangements of other roots still to be calculated often take place in the subspace 
related to (a”ij) already during the iterations for the root just treated which avoids 
again slowdown of the convergence when the next root is calculated. In addition, 
when proceeding on that way the chance becomes very high to fill up all possibly 
existing eigenvalue holes between the calculated roots with approximate values 
obtained from the diagonalization of (cl,). 

The procedure which enforces convergence to an eigenvector with a given set 
of dominant components runs as follows: from all M eigenvectors of the matrix 
((?ij) the desired one is that which gives the greatest weight in the expansion (1) 
to that prediagonalization vector which represents the structure of the eigenvector 
wanted. Hence, in our modified scheme the eigenvector matrix (a$‘) is inspected 
after each iteration step: if it is found that now ah”“’ instead of a;,’ has the largest 
contribution from that prediagonalization vector then the following iteration 
(M -+ M + 1) is carried out after changing k to h. Such exchanges will occur until 
convergence to the desired eigenvector begins. 

The calculation of further eigenvectors and eigenvalues is carried out in an 
analogous manner: it is determined by the same method which of the remaining 
eigenvectors of the (~7,~) matrix obtained in the last iteration for the eigenvector 
just treated represent the structures of the eigenvectors being sought, i.e. that or 
those already determined and all remaining species still to be treated. One gets 
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a new set of numbers (;,.I, chooses again I ,> maximum ({cr}) and uses as basis 
vectors the 1 eigenvectors of (&) which provide, in general, an improved zero- 
order subspace. That procedure takes also care of the possibility that the eigenvalue 
numbers of roots already obtained might change while treating the other vectors. 

k = minimum)({l?,.,}) is taken again as the eigenvalue number at the beginning 
of the calculation of the following root where the prime at the index r means that 
the eigenvalue just calculated is to be excluded. 

The modified procedure is outlined in the following scheme: 

A. Supply K trial vectors bjr (i = 1, 2,..., K) which show the qualitative 
structure of the dominant components of the desired full vectors. 

B. Carry out a prediagonalization of order n with resulting vectors by’, 
j= 1,2 ,..-, n. 

C. Assign to each bir by an overlap test a corresponding partner in the 
b?’ space (one-to-one correspondence). The numbering of the selected bj”’ vectors 
be {v,}; Y = 1, 2 ,..., K. 

D. Choose the dimension of the zero-order subspace as 

2 3 maximum({v,}) 

and start the procedure with that root which has the number (in the subspace) 

k’ = minimum({v,)). 

Set M = I, k = k’ 

E. Form the M x M matrix (cij) and do one Davidson iteration on the kth 
root A!/‘) of (&). When convergence is achieved continue at H. 

F. Inspect the eigenvector matrix (LX::;‘) to find that vector with the number 
K” which among all M eigenvectors contains in its expansion (1) the subspace 
vector b$’ with the highest absolute weight. 

G. Set k = ff, M = M + 1, continue at E. 
H. Compute the eigenvector with formula (1) by using for M and k their 

values in the last iteration step. The desired root is hk”‘. 
I. If another case is to be treated find (in the same way as in F.) the possible 

new labelling for the roots already solved as well as for those still to be treated 
which is called {;.r}; r = 1, 2 ,..., K (with respect to the eigenvector space of the last 
iteration step). 

Choose the new subspace dimension I as 

I > maximum((fi,}). 
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The new zero-order subspace is formed by the vectors 

bt.0' = X(h4) 
1 j 

j= 1,2 ,..., I (Formula (1)) 

The next root to be treated is 

k’ = minimum((6,) - (3Jalready treated). 

Set k = k’; M = I; v, = 6,. , P = 1, 2 ,..., K. Continue at E. 

With the help of this procedure not only the starting points for the roots still to 
be treated are improved indirectly by carrying out the iterations for one root but 
also the “control vectors” b$’ get closer to the desired eigenvectors each time 
when a further root is obtained. 

According to C. any trial vector bir will find a partner in the br’ space. But a 
badly chosen prediagonalization might not provide at all an appropriate partner 
vector for biT or lead to a loss of the one-to-one correspondence. Thus it is useful 
to introduce in addition a threshold (to be established by experience) which acts 
as a lower bound for the allowed overlaps. In the case that a guess vector biT fails 
to exceed this threshold, biT itself can be considered as zero-order trial vector and, 
after orthonormalization, can be taken to generate the zero-order subspace. If 
the full problem has no solution with the expected structure this will lead, of course, 
to a breakdown of the method. 

4. CONVERGENCE 

In order to get an idea about the convergence behavior of Davidson’s procedure 
we consider the following simplified situation: first the present consideration is 
restricted to the lowest root, secondly the zero-order subspace is assumed to 
consist of one unit vector with only one nonzero component (this situation is 
realistic if this component corresponds to the Hartree-Fock determinant) which 
is assumed without loss of generality to hold position 1. 

The first iteration generates be1 according to Eq. (2) Section 2. 

b,l = d,/l d, llje 

(3) 

which is orthogonal to b:“. (The O/O situation arising for the first component is 
solved by setting this quotient equal to zero.) 
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The two by two matrix (Hij) has then the following elements: 

Since / h, - L& / is small compared to 1 &I j, the argument of the square root has 
to be close to unity and, hence, expanding the square root up to the first order 
yields for the lower root 

Inspection of the Eqs. (3) to (5) shows that the first Davidson iteration is equi- 
valent to a variational superposition of the zero and first-order wavefunctions 
(corresponding to bi”’ and b,l respectively) obtained by a perturbation treatment 
of the Hamilton matrix considering the off-diagonal elements as perturbation. 
Hence the lowering of &i can be expressed in terms of zero (E,), second (EZ) 
and third (Es) order perturbation energies, respectively, as 

A, - d,, = 
EZ2 

I d, I * Eo - Es 

That means that the Davidson scheme converges already in the first iteration step 
better than does a first order perturbation treatment and that the energy improve- 
ment is better than the perturbational correction in third order. 

Good convergence requires that the off-diagonal elements are small compared 
to the separations of the diagonal elements (see Eq. (3)). 

An investigation of the convergence behavior in the further iteration steps and 
its relationship to perturbation schemes is in progress which is expected to explain 
the good convergence in case of near-degenerate roots. 

5. RESULTS AND APPLICATIONS 

The RHP is applied to two Cl-matrices of the molecule C,H, and ArH+ with 
dimension N -= 3316 and N = 905, respectively. In the C,H, case qualitative 
trial vectors bir for three desired states are supplied whose partner vectors bj”’ 
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in the zero-order subspace resulting from a prediagonalization of order 20 have 
the numbers 1, 4 and 7. The corresponding roots of the full secular equation come 
out having the eigenvalues numbers 1, 2, and 6. 

This case provides an example for the phenomenon which is generally discussed 
in Section 3: while iterating on the first root a rearrangement of the subspace takes 
place which allows to do the next root with the right k value for all iterations. 
The third state, however, has after completion of the second root still not its 
final eigenvalue label. This fluctuation of the highest root could eventually be 
avoided if instead of choosing the minimal dimension of the subspace 
I = maximum({v,)) (see Steps D and I of the scheme in Section 3) a greater I value 
would be taken. 

In a further test the sixth root of the full equation is calculated directly without 
carrying out any prediagonalization. Here the trial vector bLT which consists of 
a 1.0 in the position of the dominant configuration and of zeros for the remaining 
components is chosen to form the zero-order subspace of dimension 1. Table 1 
shows how the method starting from k = 1 successively identifies higher li values 
as the desired ones. A change of the root number is, in general, accompagnied 
by an increase of the absolute value of the error vector qar . 

In addition, one sees from Table I that a reduced accuracy requirement allows 
to get a higher root without filling up all lower eigenvalue holes in the (Gjj) space. 
This gives hope to find even rather high-lying roots without too much effort. 

In Table II it is demonstrated that the lower dummy roots which are generated 
as by-products in the iteration process shown in Table I provide rather good 
approximations for the actual lower roots which are determined by the unmodified 
Davidson method. No convergence difficulties arise from the near-degeneracy of 
the roots with numbers 4 and 5 (13 iterations for the fourth and only 8 iterations 
for the fifth using as convergence test 1 q.\r ( ( 1O-G). 

Table III shows in analogy to Table I the results of a direct determination of the 
actual 4th root of the ArH+ case using only the qualitative guess vector as zero- 
order space. In order to test the power of the RHP in worse situations the nonzero 
components of brT = b:” w ere chosen to consist of only l/ 10 and - 11 z/Z in the 
positions of the two dominant configurations. Despite strong mixing of other 
components the eigenvector with number 4 in the full secular equation which of 
all computed lower states resembles the given trial vector most is successfully 
identified by the procedure. By carrying out prediagonalizations in both cases the 
desired roots are found, of course, with less iterations. 

The RHP turns also out to be very effective method for the energy extrapolation 
technique suggested by Buenker and Peyerimhoff[4]. This method tries to predict 
the eigenvalues of the matrix of a full CI which is too big to be treated, in the 
following way: one solves a series of secular equations of manageable size corre- 
sponding to different lengths of the wavefunction expansion. The resulting sets 
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of eigenvalues are used to find approximations for the roots of the full CI by an 
extrapolation scheme. Because of technical reasons one treats the largest secular 
equation corresponding to the longest expansion first and continues with equations 
of descending order. 

As long as several successive eigenvalues are wanted and as long as these roots 
have the same ordering in all secular equations to be treated this task can easily 
be solved by the use of the MOR method: The truncated eigenvectors of one 
eigenvalue problem form very good starting vectors for the following reduced one. 

If this is to be carried out for a single higher-lying root or for several non- 
successive roots the unmodified Davidson scheme can be used if the ordering of 
the roots is maintained in all secular equations to be treated. The truncated 
reorthogonalized eigenvectors of one secular equation solved are used as to form 
the zero-order subspace for the solution of the next secular equation which leads 
to a very fast convergence. 

But, in general, only the RHP is successful in yielding the results needed for 
the extrapolation procedure since in many cases the desired roots, especially 
higher-lying ones, have a different eigenvalue numbering in the series of eigenvalue 
equations to be solved. 

That situation arises, for instance, in the case of the 6th root of the C,H, problem 
as shown in Table IV. The eigenvector of that root changes completely its structure 

TABLE IV 

Comparison of the Dominant Eigenvector Components Resulting from Davidson’s Method 
and the RHP Applied to a Series of C,H, CI Matrices’ 

Dimension 3316 2698 2048 1656 
- ___~~- 

Method A B A B A B A B 
Root number 6 6 6 6 6 7 6 7 

Dominant 0.9390 0.9390 0.9401 0.9401 - 
eigenvector 0.0574 0.0574 0.0580 0.0580 - 
components -0.1226 -0.1226 -0.1252 -0.1252 - - 

0.0578 0.0578 0.0592 0.0592 - 
-0.1229 -0.1229 -0.1252 -0.1252 - - 

0.0578 0.0578 0.0592 0.0592 - 
- - - - 0.9833 
- - - - -0.1265 

0.9481 - 0.9538 
0.0633 - 0.0709 
-0.0932 - -0.0675 
0.0624 - 0.0669 
-0.0931 - -0.0675 
0.0624 - 0.0670 
- 0.9848 - 
- -0.1405 - 

a A, vectors obtained with Davidson’s method; 13, vectors obtained with RHP. Only coefficients 
with an absolute value greater than 0.05 are listed; - indicates coefficients in corresponding 
positions with an absolute value less than 0.05. 
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when one proceeds from the second to the third secular equation of the series. 
An inversion of the roots with numbers 6 and 7 occurs when going from dimension 
2698 to 2048 and hence the unmodified Davidson method leads to a state not 
wanted (see columns A in Table IV). The RHP, on the other hand, automatically 
changes the eigenvalue number (k value, see Section 3, steps F and G of the scheme) 
and yields the root with the right eigenvector in all cases (see columns B in 
Table IV). 
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